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In this paper, analytical and experimental results of an investigation of active
control of sound radiated from cylinders are presented. The aluminium cylinder
is 1 m in length, 25 cm in diameter and 2·4 mm in thickness with two rigid
end-caps at both ends. The excitation is a band-limited random noise
encompassing the first five modes of the cylinder and the control actuators are
surface mounted piezoelectric transducers. Since it is desired to integrate the error
sensors into the structure, the recently developed Discrete Structural Acoustic
Sensing (DSAS) approach is extended to the cylindrical co-ordinates and
implemented using 12 accelerometers mounted on the cylinder. The structural
acoustic sensor provides times domain estimates of far-field radiated sound at
predetermined radiation angles. The controller is a 3 by 3 Filtered-x LMS
paradigm implemented on a TMS320C30 DSP. The results show good global
control of the radiated sound over the frequency bandwidth of excitation. Most
important, the proposed discrete structural acoustic sensor yields similar
performances as error microphones located in the far field. The sensor is also
shown to improve far-field attenuation over minimization of normal acceleration
at discrete locations on the cylinder structure.
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1. INTRODUCTION

Much research has been conducted in the active control of low-frequency
structure-borne sound. When compared to passive methods, active control
presents significant advantages in the low-frequency range where passive control
becomes often impractical due to prohibitive volume and/or mass requirements.
For the past decade, Active Structural Acoustic Control (ASAC) has received
much attention as it presents a practical alternative to the control of low-frequency
structurally radiated noise [1, 2]. In this technique, the radiated sound pressure is
attenuated by applying mechanical inputs directly to the structure rather than by
exciting the surrounding medium with acoustic sources (Active Noise Control).
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Piezoelectric devices have been applied extensively to Active Structural Acoustic
Control systems as structural actuators [3–5] thus yielding a compact or ‘‘smart’’
structure. In an attempt to further reduce the size of the overall control
arrangement, the microphones traditionally located in the far field to provide
radiation error information are also being replaced by structural sensors such that
all transducers are integrated in the structure.

As most ASAC applications involve noise control below the coincidence
frequency of the radiating structure, appropriate structural sensors for ASAC
should only observe the radiating part of the structural vibrations. This gives more
flexibility to the controller which in some situations modifies the structural
vibrations such as to attenuate far-field radiation with no net reduction in the
overall vibration levels. Sound attenuation in the far field can then be achieved
with a reduced control authority compared to cases where all structural motion
is cancelled (Active Vibration Control) [6].

With the emergence of polyvinylidene fluoride (PVDF) as a sensor material,
several structural sensors for ASAC have been proposed to observe the radiating
part of the structural vibrations. Most of these sensing techniques are based on
modal sensing [7]: the sensor effectively observes a specific set of modes of
vibration (natural or radiation modes of the uncontrolled response) which couples
well to far-field radiation [8–11]. An accurate knowledge of the structure’s dynamic
properties is therefore required. Recently, an alternative sensing technique referred
to as Discrete Structural Acoustic Sensing (DSAS) was demonstrated both
analytically [12, 13] and experimentally [14, 15] on baffled planar radiators. The
technique implements an array of structural point sensors whose outputs are
passed through digital FIR filters to estimate in real time the far-field radiated
pressure in a given direction, or equivalently, a given wave-number component,
over a broad frequency range. It uses the relation between the structural
out-of-plane vibrations and the far-field sound pressure as defined by the
Helmholtz integral. One of the significant advantages of this strategy lies in its low
modelling requirements compared to modal sensing approaches. In particular, the
sensor design does not require the knowledge of the structural mode shapes and
thus remains largely independent of the boundary conditions. Consequently, it is
particularly well adapted for feedforward control approaches commonly used in
ASAC systems where no analytical system modelling is necessary. It also provides
time domain information which is required by the Filtered-x LMS algorithm
commonly used in feedforward control. This paper presents analytical and
experimental results on the extension of Discrete Structural Acoustic Sensing to
baffled cylindrical radiators.

Most of the work on ASAC systems deals with planar geometries or systems
than can be decomposed in a set of planar radiators and few reports of experiments
on cylindrical structures can be found in the literature. Ruckman and Fuller [16]
reported numerical simulations of ASAC applied to a finite cylinder system.
Previous work by Clark and Fuller [17] studied experimentally the harmonic
control of sound radiation from a finite enclosed cylinder using PVDF error
sensors and piezoelectric actuators. Results showed the PVDF sensor was effective
in observing the longitudinal extensional waves of the cylinder (‘‘accordion’’
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modes) and thus, good sound attenuation was obtained for this type of excitation.
However, very little attenuation was achieved for radial excitations (normal
bending modes) due to the relatively high modal density of the cylinder. The
present study extends the above work by considering broadband radiation control
over the first five bending modes of the structure. After briefly introducing the
theoretical formulation, analytical and experimental results are presented. In both
cases, the discrete structural acoustic sensor is first studied in terms of its accuracy
to predict radiated pressure. Broadband radiation control results are then
discussed by comparing the performances of the sensor to those of error
microphones located in the far field.

2. THEORETICAL BASIS

This section presents the analytical formulation of Discrete Structural Acoustic
Sensing. A relation between discrete structural acceleration and the far-field
pressure estimate is derived for the case of baffled cylindrical geometries.

2.1. -  

For the general case of arbitrary geometries, the sound pressure radiated from
a vibrating structure into an unbounded medium can be expressed using the
Kirchhoff–Helmholtz integral formulation [18]. Assuming a harmonic solution for
the pressure, p(r) ejvt, where v is the angular frequency, this is expressed as

p(r)=g g
S0

$rG(r=r0)ẅ(r0)+ p(r0)
1G
1h0

(r=r0)% dS(r0), r$V. (1)

In the above equation, S0 denotes the radiating surface and V the surrounding
volume. The sound pressure p(r) at field point r is expressed as a surface integral
involving the out-of-plane structural acceleration, ẅ(r0), measured at location r0

on the radiating surface, the surface pressure p(r0), the Green’s function, G(r=r0),
and its normal gradient (1G/1h0 represents the component of the gradient of G
along the unit vector h normal to S0), and the fluid density, r. Note that this
formulation assumes the radiator has solid boundaries such that the fluid velocity
on the boundary is equal to the structural out-of-plane velocity. The normal
pressure gradient then becomes equal to rẅ(r0). Discrete Structural Acoustic
Sensing is based on the existence of a Green’s function satisfying the Neumann
boundary condition,

1G
1h0

(r=r0)=0, r$S0, (2)

such that the radiated pressure field becomes solely dependent on the structural
acceleration and geometry.
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For baffled cylindrical geometries (see Figure 1), a closed-form solution exists
for the Green’s function verifying equation (2). The radiated pressure is then
expressed in the cylindrical co-ordinate system (R, u, f) as

p(R, u, f)= r g
2p

0 g
+L

−L

G(R, u, f=r= a, f', z')ẅ(f', z')a df' dz'. (3)

The Green’s function in equation (3) can be obtained from the radiated pressure
due to a point acceleration distribution located on an infinite cylindrical baffle.
The resulting expression is approximated in the far field as [18]

G(R, u, f=a, fo, z0)=−
exp[−jk(R− z0 cos u)]

p2akR sin u
s
+a

n=0

j n+1

on

cos [n(f−f0)]
H(2)'

n (ka sin u)
, (4)

where on =2 for n=0 and on =1 for nq 0 (n integer). The function H(2)'
n (x)

denotes the first derivative of the nth Hankel function of the second kind [19]. Here
n represents the circumferential modal order. The acoustic wave-number is
denoted as k=v/c where c is the speed of sound. The various co-ordinates and
dimensions involved in equation (4) are shown in Figure 1.

2.2.  

An estimate of the radiated pressure in equation (3) is now constructed. The
integral over the radiating surface S0 is approximated using a Q point zero-order
interpolation of the acceleration distribution [15], i.e., the acceleration is assumed

Figure 1. Baffled cylindrical geometries.
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constant over Q small elemental surfaces, Sq , q=1, 2 . . . , Q, such that
S=jQ

q=1Sq . The resulting pressure estimate takes the general form

pd (R, u, f, t)= s
Q

q=1

ẅ(fq , zq , t)Hq (R, u, f), (5)

where (fq , zq ) represents the co-ordinates of the qth node, and Hq (R, u, f), the
associated sensor transfer function. Defining Sq = aDzqDfq as the qth elemental
surface aligned with the axial and circumferential directions such that its center
coincides with (fq , zq ), the sensor transfer functions can be expressed as

Hq (R, u, f)= r g
zq +Dzq /2

zq −Dzq/2
g

fq +Dfq /2

fq −Dfq/2

G(R, u, f=a, f', z')a df' dz'. (6)

The transfer function Hq (R, u, f) can be interpreted physically as the sound
pressure radiated at (R, u, f) from the qth elemental surface vibrating along the
normal to its center (fq , zq ) with a unit acceleration. In other words, the pressure
estimate is constructed by summing the radiation contribution of Q cylindrical
pistons weighted by the measured acceleration amplitudes. It is thus referred to
as the piston approximation. Assuming the Green’s function remains almost
constant over each surface Sq , the transfer function in equation (6) can be replaced
by raDzqDfqG(R, u, f=a, fq , zq ). In this case, the far-field pressure is estimated
from the contribution of Q monopole sources (monopole approximation). As
expected, both approximations become equivalent as k max (Dzq , Dfq )W 1.

It should be stressed that the sensor transfer functions solely depend on the
geometry of the problem and the properties of the fluid medium. No accurate
knowledge of the structure’s dynamics (e.g., natural mode shapes) is thus required
for their design. Note however that some information is still needed in order to
determine an appropriate discretization level for accurate estimates. Furthermore,
the sensing approach can be extended to geometries for which no Green’s function
is available analytically. The far-field pressure radiated from each elemental
surface vibrating independently on the structure’s boundary must then be solved
numerically using a technique such as the Boundary Element Method [20].

3. PRACTICAL IMPLEMENTATION

This section briefly recalls some of the important issues associated with the
practical implementation of Discrete Structural Acoustic Sensing. The pressure
estimate presented in the previous section is implemented on a real system using
a set of accelerometers mounted on the structure and arrays of digital filters. More
precisely, each measured acceleration signal is pased through a digital filter
modelling the associated sensor transfer function. All filter outputs are then
summed to provide the sound pressure estimate. Several arrays of filters can be
implemented in order to provide pressure estimates at different locations. This
arrangement is shown in Figure 2 along with a schematic of the controller based
on the three channel Filtered-x LMS algorithm.
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Figure 2. Schematic of the discrete structural acoustic sensor along with the three-channel
feedforward controller.

As explained above, each transfer function represents the far-field radiation into
an unbounded medium from a cylindrical piston source (or monopole) with unit
acceleration and located on a cylindrical baffle. The associated characteristics
directly motivate the use of Finite Impulse Response (FIR) filters to model the
sensor transfer functions. In particular, no resonance behavior occurs due to the
assumption of an unbounded medium at infinity and notches in the transfer
functions magnitude associated with zero pressure angles are easily modelled by
appropriate zeros in the filter’s impulse response.

Another important issue is related to the time delay of the sensor transfer
functions, which is directly related to the acoustic path propagation time, R/c. As
the pressure estimate is only valid in the far field, this delay can become significant
compared to the sampling period of the digital filter, thus increasing its complexity.
The authors have shown in previous work, however, that error signals based on
far-field pressure at a given location can be shifted in time without loss of
performance of the control system (the time shift is equivalent to moving the
minimization point along a constant radiation angle) [15]. Removing the above
time delay yields transfer functions with a minimum phase delay which
significantly reduces the number of FIR filter coefficients required for accurate
modelling.
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4. SYSTEM CHARACTERISTICS AND EXPERIMENTAL SET-UP

Testing of the structural acoustic sensor described above was performed on a
finite aluminum cylinder. This section presents the main characteristics of the
system, the control and measurement set-ups implemented in the experiments, as
well as the numerical model of the structure.

4.1.  

Due to a limited number of accelerometers available for implementing Discrete
Structural Acoustic Sensing, the choice of the cylinder’s dimensions and material
was made such that the first few flexural modes of the structure have low modal
order in both the axial and circumferential directions. The cylinder characteristics
are given in Table 1. The dimensions were measured on the actual structure while
the material properties are based on standard values for aluminum. In order to
allow structural vibration measurements over the entire surface of the cylinder as
well as acoustic measurements over the sphere surrounding the structure, the
cylinder’s attachment to its support stand is designed to allow full rotation along
its main axis. The cylinder is closed at both ends by aluminum end-caps 12·7 mm
in thickness. Each end-cap is attached to the cylinder with a set of 12 small screws
equally spaced along the circumference. A steel rod 3·18 mm in diameter is
threaded into each end-cap and mounted on a nylon ring. The ring is fixed in a
19·1-mm aluminum section which is bolted to a heavy steel support stand. To
allow acoustic measurements of the baffled structure, two sections of ‘‘rigid’’ PVC
pipe are installed on each side of the cylinder along its main axis. The two pipes
extend in length up to the walls of the anechoic chamber. A picture of the complete
rig including the baffle is shown in Figure 3.

All structural vibration inputs, i.e., both disturbance and control inputs, are
applied through single-sided piezoelectric actuators. No curved actuators were
available for the experimental testing and flat actuators [21] were mounted on the
cylinder by cutting them across their width into a set of eight strips of same
dimensions. The original actuators are 63·5 mm in length and 38·1 mm in width,
which results in eight 7·9 by 38·1 mm strips. They are mounted on the cylinder’s

T 1

Dimensions and material properties of the cylinder and piezoelectric actuators

Parameter Cylinder Actuators

Length (mm) 987 38·1
Outside diameter/width (mm) 254 69·9
Thickness, (mm) 2·36 0·1905
Young’s modulus (N/m2) 7·1×107 6·1×1010

Poisson ratio 0·31 0·33
Mass density (kg/m3) 2700 7750
d31 constant (m/V) – 171×10−12

Hysteretic damping factor 0·002 0
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Figure 3. Cylinder rig inside the anechoic chamber.

outside surface side by side with their length along the cylinder’s axis and wired
in phase. A gap of approximately 1 mm remains between each actuator strip to
avoid short circuits between the electrodes of two adjacent actuators. The total
surface area covered by the set of eight actuators is 69·9 by 38·1 mm. Table 1
presents the dimensions and material properties of the piezoelectric actuators.
Four sets of the actuator arrangement described above are mounted on the
cylinder according to the center locations given in Table 2. The disturbance
actuator center location serves as the origin of the circumferential direction,
f=0°. Its axial location, z/L=−0·328, ensures that all flexural modes present
in the 0–1000 Hz bandwidth are excited. The three other actuator sets are
implemented as control inputs. Their location was determined in order to allow
various control test configurations of interest.

T 2

Center location of actuators

Actuator z/L f (degrees)

Disturbance PZT −0·328 0
Control PZT No. 1 0·370 180
Control PZT No. 2 0·220 60
Control PZT No. 3 −0·395 250
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The discrete structural acoustic sensor implemented on the cylinder uses 12
accelerometers (PCB Piezo-electric ICP accelerometers—Model 352A10). The
point sensors are arranged as 2 rings of 6 accelerometers equally spaced according
to

6fq1 = q1Df,
zq2 =−L+Dz/2+ q2Dz,

q1 =0, 1, . . . , Qf −1, Df=2p/Qf ,
q2 =0, 1, . . . , Qz −1, Dz=2L/Qz ,

(7)

where Qz =2 and Qf =6 are the number of points along the axial and
circumferential direction, respectively. Note that the accelerometers located at
f=0° are aligned with the disturbance actuator such as to coincide with an
anti-node of the modes excited by the disturbance input. As it will be discussed
later, the sensor accuracy is independent of the point sensor circumferential
locations when the number of sensors along the circumferential direction is greater
than the highest circumferential order of the modes present in the bandwidth.
When this condition is not satisfied, however, care must be taken that the point
sensors do not coincide with the nodal lines of a given mode (mode n=3 in this
case). Furthermore, placing the sensors on anti-nodal lines ensures better signal
to noise ratio, thus improving the accuracy of the sensor estimate.

4.2.    -

For all experimental testing, the cylinder is excited through the disturbance
actuator with a band-limited random noise. The sensor accuracy tests are
performed over a 200–630 Hz bandwidth while the control tests use a 200–500 Hz
bandwidth. The reduced bandwidth associated with the control tests ensures that
the 2 by 6 sensor (i.e., 12 accelerometers total) yields relatively accurate estimates
over the frequency range. A three channel Filtered-x LMS algorithm [22] is
implemented on a Texas Instrument TMS320C30 digital signal processor (DSP)
to provide up to three control signals (see Figure 2). The experimental results
presented in this paper are limited to cases where only the first and second control
actuators were excited (see Table 2). The controller’s reference signal is taken from
the signal fed to the disturbance actuator. Most of the control tests include an
artificial delay of 20 samples in the disturbance path so as to improve system
causality. A few cases were also run with a zero delay in order to evaluate the
influence of system causality on the control performance. All control tests use the
following settings: the sampling frequency is set to FS =2000 Hz, the FIR
compensators have 50 coefficients, and the IIR filters modelling the filtered-x path
transfer functions have 60 coefficients in both numerator and denominator. All
tests use three error signals based on the structural acoustic sensor and far-field
error microphones (B&K 1/2 in microphone, Model 4166), respectively. The
sensor’s array of filters is implemented on a second TMS320C30 digital DSP. Note
that both controller and sensing code could be implemented on a single DSP if
desired. Three error microphones are also located along u=70°, u=90°, and
u=110°, in the f=0° plane at R=1·85 m, while several sets of FIR filters were
designed to provide pressure estimates for various radiation angles. All sensor FIR
filters have 22 coefficients with a sampling frequency, FS =6000 Hz. The sensor
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transfer functions are accurately modelled up to about 2500 Hz. This wide
bandwidth relative to the actual bandwidth of excitation was found necessary in
order to ensure stability for the control system. Cases where the response of the
sensor filters is not constrained at higher frequencies can lead to unwanted
amplification of high frequency content remaining in the system due to the finite
roll-offs of the low-pass filters.

All tests were conducted in a 4·2 by 2·2 by 4·5 m anechoic chamber at the
Vibration and Acoustics Laboratories (VAL), Virginia Tech. The chamber has an
approximate cut-off frequency of 250 Hz. Out-of-plane structural vibrations are
measured with a Polytec laser vibrometer (Model OFV-2600/OFV-501). To allow
measurements over the entire radiating surface, the laser head is mounted on a
one-dimensional linear traverse driven by a stepper motor while a second stepper
motor mounted on the end-cap assembly rotates the cylinder around its main axis.
The structural velocity measurements used a grid of 13 points along the axial
direction and 18 points along the circumferential direction. The measurement
point locations are defined by equation (7) with Qz =13 and Qf =18. This
discretization level proved to be sufficient to accurately measure the structural
response over the frequency bandwidth of excitation. The sound pressure radiated
from the cylinder is measured inside the anechoic chamber with a B&K 1/2 in
microphone (Model 4166) mounted on a circular traverse. The traverse
microphone is located at a radius of 1·85 m from the center of the cylinder. Due
to the legs of the support stand, the traverse can only move in the x–z plane from
u=10° to u=170°. The rotation of the cylinder also allows measurements along
the circumferential direction from f=0° to f=360°. All far-field measurements
use a grid of Qu =13 points along the azimuthal direction, u, and Qf =18 points
along the circumferential direction, f.

4.3.  

In order to study various sensor configurations, numerical simulations were
performed prior to the experiments described above. The cylinder structure is
modelled under steady-state harmonic excitation of point forces and piezoelectric
actuators with a variational approach implementing the Rayleigh–Ritz
formulation [15]. In this model, the mechanical displacements and electrical fields
within the piezoelectric actuators are fully coupled thus including the mass and
stiffness loading of the actuators. This energy based formulation also allows
modelling of arbitrary boundary conditions applied along the edges of the
cylinder. To this purpose, the model includes translational and rotational springs
along the axial, circumferential, and raidal directions. The stiffness factor of each
spring can then be adjusted to model arbitrary conditions. The reader is referred
to reference [15] for a complete description of the model. The optimal control
voltage to each actuator is computed using standard Linear Quadratic Optimal
Control theory [2], where the cost function to be minimized is a quadratic function
of the control voltage amplitudes.

Table 3 presents the natural frequencies of the first few modes of the cylinder
as obtained from the numerical model and experimental modal analysis of the test
structure, respectively. Examination of the associated mode shapes reveals that the
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T 3

Comparison of the numerical and experimental
natural frequencies

Mode Modelled Measured
(m, n) (Hz) (Hz)

(1, 2) 240·8 241·2
(1, 2)* 241·0 244·2
(1, 3) 304·9 302·9
(1, 3)* 305·5 303·1
(2, 3) 498·8 497·0
(2, 3)* 499·2 500·3
(1, 4) 547·6 540·6
(1, 4)* 547·8 541·1
(1, 1) 565·3 708·0
(1, 1)* 565·5 –
(2, 4) 609·1 601·7
(2, 4)* 609·2 604·6

structure’s attachment creates approximately simply-supported boundary
conditions where the first modal index, m, is associated with the axial direction,
and the second index, n, with the circumferential direction. Note that each mode
of vibration is associated with two distinct natural frequencies and mode shapes
(i.e., cos (nu) and sin (nu) angular variation) rotated along the circumferential
direction by p/(2n) relative to one another. This behavior is expected due to the
asymmetry introduced by the added mass and stiffness of the piezoelectric
actuators. Disregarding the mismatch of mode (1, 1), good agreement between
numerical and experimental natural frequencies can be observed. Including the
circumferential dependence of the stiffness factors used to model the boundary
conditions would possibly improve the match especially for the (1, 1) ‘‘beam’’
mode.

5. SENSOR ACCURACY

This section successively presents analytical and experimental results showing
the accuracy of the structural acoustic sensor. The sensor estimate is compared
to the actual sound pressure radiated in the far field over the 200–680 Hz
bandwidth.

5.1.  

Figure 4 shows the magnitude of the far-field radiated pressure in direction
(u, f)= (70°, 240°) (solid line) along with the sensor estimate based on the piston
approximation and two different point sensor configurations. Both results were
calculated using the analytical model of the cylinder and its associated radiation
field which are described in detail in reference [15]. The ‘‘actual’’ pressure
corresponds to the full analytical prediction while the sensor estimate is the
far-field pressure estimated using the analytical model in conjunction with the
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structural acoustic sensor theory of section 2.2. The dashed line corresponds to
a 8 by 7 sensor, i.e., the acceleration measurement points are located according
to equation (7) with Qz =8 and Qf =7, and the dotted line to a 2 by 12 sensor.
Recalling the natural frequencies given in Table 3, the resonance peaks
correspond, as frequency increases, to modes (1, 2), (1, 3), (2, 3), (1, 4), (1, 1) and
(2, 4) where the first and second index referes to the axial and circumferential
order, respectively. Note the unusual characteristics of cylinders for which the
fundamental mode (1, 1) is not associated with the lowest resonance frequency
[18]. As seen on the plot, the 8 by 7 sensor yields excellent accuracy at the
resonance frequency of all modes included in the bandwidth except for modes
(1, 4) and (2, 4) where large errors can be observed. Considering the 2 by 12 sensor,
excellent accuracy is obtained at the resonance frequency of all modes except for
a small error near resonance of modes (2, 3) and (2, 4). These results illustrate two
fundamental properties of the sensor estimate for cylindrical geometries as
outlined below.

Analogous to the case of planar radiators, the far-field radiated pressure in
equation (3) can be expressed in terms of the two-dimensional wave-number
transform of the structural out-of-plane acceleration [15]. The wave-number
transform along the circumferential direction maps a periodic spatial distribution
with period 2p into two sets of wave-number components (or Fourier coefficients)

Figure 4. Actual and estimated far-field pressure in direction (u, f)= (70°, 240°). ——, actual;
----, Qz =8, Qf =7; · · · · · , Qz =2, Qf =12.
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defined over a discrete set of wave-numbers, n=0, 1, . . . , +a, while the
transform along the axial direction maps a finite length axial distribution into a
wave-number distribution extending from −a to +a. Now considering a sensor
based on the monopole approximation and a set of equally spaced measurement
points, the resulting estimate can be expressed in terms of the associated discrete
wave-number transforms as [15]

pd (R, u, f)=−
r e−jkR

pkR sin u
s
+a

n=0

j n+1

H(2)'
n (ka sin u)

{ẅ
0 c

d,n (k cos u) cos (nf)

+ẅ
0 s

d,n (k cos u) sin (nf)}, (8)

where

ẅ
0 c

d,n (g)=
Df

pon
s

Qf −1

q1 =0

ẅ
0

d (fq1, g) cos (nfq1)

ẅ
0 s

d,n (g)=
Df

pon
s

Qf −1

q1 =0

ẅ
0

d (fq1, g) sin (nfq1)

and ẅ
0

d (f, g)=Dz s
Qz −1

q2 =0

ẅ(f, zq2) e jgzq2. (9)

Note that the actual radiated pressure is obtained by replacing ẅ
0 c

d,n (g) and ẅ
0 s

d,n (g)
in equation (8) by their continuous equivalent

ẅ
0 c

n (g)=
1

onp g
+a

−a g
2p

0

ẅ(f, z) cos (nf) ejgz df dz,

ẅ
0 s

n (g)=
1

onp g
+a

−a g
2p

0

ẅ(f, z) sin (nf) ejgz df dz.

(10)

The pressure radiated in the far field at a particular angle is associated with a single
axial wave-number component, k cos (u), within the supersonic region, [−k, +k],
and an infinite number of circumferential wave-numbers, n=0, 1, . . . , +a. In
practice, the infinite summation can be truncated based on the highest order of
the circumferential modes included in the response and the range of the
non-dimensional parameter, ka, as the magnitude of the Hankel derivative tends
towards infinity as n increases.

From equation (9), the accuracy of the sensor estimate is dictated by the levels
of aliasing occurring in the axial and circumferential discrete wave-number
transforms. The number of point measurements along the axial direction, Qz ,
should be such that the Nyquist axial wave-number, KS /2=Qzp/(2L), remains
above the main axial wave-number components of the acceleration distribution.
Likewise, the circumferential Nyquist wave-number, KS /2=Qf /2, should be
greater than the highest circumferential order of the modes found in the structural
response. This requirement is a direct consequence of the sampling theorem
commonly applied to the sampling of time domain signals. It should be pointed
out that unlike the axial wave-number transform which extends up to infinity
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regardless of the spatial distribution due to the finite cylinder length, the
circumferential wave-number transform only contains the components associated
with modes found in the distribution. Therefore, while the axial discrete
wave-number transform always results in some level of aliasing, the discrete
circumferential wave-number transform will yield no aliasing, i.e., perfect
estimates, provided all components above the Nyquist wave-number have zero
amplitude. In addition, all or part of the wave-number components associated
with circumferential wave-numbers above the Nyquist wave-number will yield
large errors due to the periodicity of the discrete wave-number transform. Thus,
the Nyquist circumferential wave-number should be high enough such that errors
associated with higher wave-numbers are cancelled by the large magnitude of the
Hankel derivative term. Finally, it can be shown that the circumferential
wave-number component estimate is independent of the origin of the point sensors
locations along f provided the number of measurement points satisfies the
sampling theorem along this direction. Note that similar trends are expected for
the piston approximation.

Returning to Figure 4, the axial wave-number transform on resonance features
a main peak around g=mp/(2L) where m is the axial modal index. Consequently,
the number of measurement points along the axial direction should be greater than
the modal index of the mode dominating the response, i.e., Qz qm. Similarly, the
number of point measurements along the circumferential direction should be
greater than twice the modal index of the associated mode, i.e., Qf q 2n. Cases
where at least one of the above conditions is not satisfied yield aliasing errors as
shown in Figure 4. At off-resonance frequencies, the response includes higher
order modes which reduce the accuracy of the estimate. Note that the
discretization level is the critical parameter affecting the sensor estimate. In other
words, good sensor accuracy is ensured over the entire radiating field as long as
the number of measurement points is high enough relative to the dominant modes
of the response. Finally, it should be mentioned that the above results assume
perfect modelling of the sensor transfer functions. However, due to the relative
simple characteristics of the sensor transfer functions, excellent modelling accuracy
can be achieved with only a few FIR coefficients [15]. Other analytical results, not
presented here for brevity, also confirm that Discrete Structural Acoustic Sensing
will provide good estimates of radiated pressure as long as no significant aliasing
occurs.

5.2.  

This section briefly presents the accuracy of the 2 by 6 sensor which is
implemented experimentally on the cylinder. The cylinder is excited through the
disturbance piezoelectric actuator with a band-limited random noise over
200–630 Hz. As true far-field conditions do not exist in the anechoic chamber
especially at low frequencies due to its limited size relative to the dimensions of
the cylinder and the acoustic wave-length within the frequency bandwidth of
excitation, the pressure radiated in the far field is ‘‘reconstructed’’ from the laser
measurements of the cylinder out-of-plane velocity. Analogous to the real time
pressure estimate implemented in the sensor, the pressure field is computed off-line
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Figure 5. Reconstructed and estimated far-field pressure in direction (u, f)= (76·8°, 0°). ——,
reconstructed pressure; · · · · · , sensor output.

from the structural laser measurements and the associated Green’s function
replacing the continuous integral in equation (3) by its discrete approximation [15].
However, in this case, the discretization level is much higher with a grid of 13 by
18 measurement points (see section 4.2) thus ensuring a high fidelity in the
predicted far-field sound pressure. The magnitude of the reconstructed pressure
at an angle (u, f)= (76·8°, 0°) is compared to the associate sensor estimate in
Figure 5. Recalling the system’s natural frequencies presented in Table 3, five
flexural modes have their natural frequencies within the 200–630 Hz bandwidth.
With increasing frequency, the five main resonance peaks noticed on the plot
correspond to modes (1, 2), (1, 3), (2, 3), (1, 4), and (2, 4), respectively. Notice that
the response also exhibits small contribution from ‘‘double’’ modes (1, 2)*, (2, 3)*,
and (2, 4)*.

Examining the sensor output (dotted line), the pressure estimate shows good
accuracy around the resonance frequency of the (1, 2) mode. A small variation of
about 2 dB is observed at the resonance frequency of mode (1, 3). The
reconstructed pressure is also relatively well estimated at off-resonance frequencies
around the (1, 2) mode. The sensor accuracy then deteriorates as the frequency
increases. A 6 dB variation between reconstructed and estimated pressure is
noticed at the resonance frequency of mode (2, 3) while the estimated pressure at
the resonance frequencies of the last two modes in the bandwidth (modes (1, 4)
and (2, 4)) is off by more than 20 dB.
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The above tendencies confirm the analytical results discussed in the previous
section and agree well with the properties of the sensor estimate. As mentioned
earlier, Qz =2 measurement points along the axial direction yield good estimates
for modes of axial order 1 or less. In the circumferential direction, Qf =6
measurement points ensure accurate estimates of modes up to n=2. That is to
say, spatial distributions that are dominated by modes with axial and
circumferential order larger than one and two, respectively, do not yield accurate
pressure estimates. Increasing the number of point structural sensors would in turn
increase the accuracy of the sensor prediction for these higher order modes.

6. RADIATION CONTROL

The following two sections discuss the analytical and experimental control
results. In both cases, the cylinder is under broadband excitation through the
disturbance actuator. In order to evaluate the performance of the structural
acoustic sensor, results are presented which compare its control performances to
those obtained with error microphones located in the far field. Note that the
following analysis focuses on the influence of the ‘‘error’’ information on the
control performances. In particular, the system is not optimized in terms of control
input and/or error measurement locations to achieve the best possible attenuation
in radiated power over the frequency bandwidth of excitation.

6.1.  

This section presents three control cases calculated using the analytical model.
The first two cases are based on the minimization of the estimated and actual
radiated pressure in directions (u, f)= (70°, 0°), (110°, 40°), (90°, 160°),
(70°, 240°), and (110°, 320°). These five radiation angles were chosen such as to
obtain good global sound attenuation, i.e., none of the modes included in the
frequency bandwidth have radiation nodal lines along all five angles. A third
control case involves the direct minimization of the out-of-plane acceleration
measured at the point structural sensor locations corresponding to the Active
Vibration Control case for this system. Note that for the AVC case, the number
of error signals then equals the number of accelerometers implemented in the
sensor, i.e., 12, while the ASAC cases use five error signals corresponding to the
directions of pressure estimates. All three cases use the same control input
configuration: the actuators’ locations are those given in Table 2 except for the
circumferential angle of the third control actuator which was set to f=225°. All
three control actuators are implemented as control inputs in the following results.
Note that this configuration yields an over-determined system such that the
optimal control amplitudes are solved in the least square sense. The cost function
thus does not include the control effort usually required to condition the solution
of under-determined systems [22].

Figure 6 shows the calculated radiated sound power before control (solid line)
and after control based on the three cost functions. The dashed line corresponds
to the minimization of the five pressure estimates using a 3 by 9 structural acoustic
sensor (Qz =3, Qf =9), the dotted line corresponds to the minimization of the
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actual radiated pressure in the same directions, and the dashed-dotted line
corresponds to the minimization of the out-of-plane acceleration at the point
sensor locations (see equation (7)). The sound power is computed by integrating
the closed form solution of the far-field pressure over the sphere surrounding the
cylinder. The reader is referred to reference [15] for a complete derivation.

As seen on the controlled response, the first two sensing approaches (dashed and
dotted lines) yield very close control performances. The radiated sound power is
attenuated over the entire bandwidth with very small control spillover. The total
attenuation across the bandwidth is 20·2 dB for the structural acoustic sensor and
19·4 dB for the error microphones. These results are expected since the
discretization level of the sensor ensures reduced aliasing errors for acceleration
distributions including modes with axial and circumferential order up to 2 and 4,
respectively. In other words, all modes included in the bandwidth yield accurate
pressure estimates. Note that minimizing the actual radiated pressure yields a
slight decrease in overall sound attenuation thus suggesting the small errors
introduced in the pressure estimates result in a slightly more global error
information for this particular set of minimization angles. These results show that
the structural acoustic sensor implemented in this case can effectively replace the

Figure 6. Calculated radiated sound power—minimization of pressure estimate in directions
(u, f)= (70°, 0°), (110°, 40°), (90°, 160°), (70°, 240°), and (110°, 320°). ——, before control; ----, after
control, 3 by 9; · · · · · , after control, microphones; –·–·, after control, acceleration.
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T 4

Calculated total attenuation levels over the frequency bandwidth of excitation

Attenuation (dB)
ZXXXXXXXXXCXXXXXXXXXV

Control case Mean-square velocity Sound radiated power

3 by 9 structural acoustic sensor 8·1 20·2
Error microphones 8·3 19·4
3 by 9 accelerometer array 20·7 12·4

error microphones. Comparatively, a reduced number of acceleration measure-
ment points would increase aliasing errors in the sensor estimate and in turn reduce
the global sound attenuation levels. Note that the predicted control performance
near resonance of mode (1, 1) may be inaccurate. As mentioned earlier, the
analytical model does not estimate correctly the resonance frequency of this mode
(see Table 3) and control results near its resonance should therefore be interpreted
carefully.

The third cost function associated with the minimization of the discrete
acceleration over 27 points (dashed-dotted line) does not perform as well as the
two previous cost functions based on radiation information. While similar levels
of attenuation are achieved at on-resonance frequencies (except near resonance of
the (1, 1) mode), the control performance significantly deteriorates at
off-resonance frequencies. This behavior suggests that some level of modal
restructuring occurs off-resonance when minimizing radiation information. In this
case, the controller achieves attenuation in the far field by combining several
structural modes that are present in the uncontrolled response. The overall
vibration levels do not necessarily decrease in this case. At on-resonance
frequencies, a single mode dominates the structural response and radiation control
is then achieved through modal reduction. To further illustrate these results, the
overall attenuation levels of mean-square velocity and sound radiated power are
presented in Table 4 for the three cost functions. Again, the first two cost functions
based on radiation information perform almost identically. The third cost function
based on structural information increases the overall attenuation level in
mean-square velocity by more than 10 dB. However, the attenuation in sound
radiated power decreases by about 8 dB. In other words, minimizing the structural
vibrations yields, in this case, decreased control performances in terms of radiated
sound attenuation when compared to the use of structural acoustic sensoring or
error microphones.

It should be mentioned that the above results are based on an optimal control
solution in the frequency domain which presents a number of limitations when
used to predict the performance of a real time domain control system under
broadband frequency disturbances. Specifically, the optimal control transfer
functions are not constrained to yield realizable FIR filters. This often leads to
over-estimating the controller performance and, in some cases, to control spillover
not observed experimentally due to the finite number of coefficients in the control
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compensator among other factors. Consequently, the analytical results presented
above do not accurately model the performance of the control system investigated
experimentally. However, they still provide insight into the control performance
of Discrete Structural Acoustic Sensing compared to other sensing approaches and
also indicate the maximum achievable performance.

6.2.  

This section discusses some of the control results obtained experimentally on the
system described previously. The first two cases use the 2 by 6 structural acoustic
sensor to provide error signals associated with pressure estimates in three
directions. A third case uses three error microphones located along the same
directions for comparison purpose. All three cases use the first two control
actuators, leaving the third actuator unexcited. The radiated sound power
presented below is estimated from the multiple traverse microphone measurements
over the sphere surrounding the cylinder.

The first control case corresponds to the minimization of the three sensor
outputs associated with pressure estimates in directions (u, f)= (76·8°, 340°),
(63·5°, 0°), and (103·2°, 0°), respectively. Figure 7 shows the radiated sound power
before and after control. The dashed line corresponds to the standard
configuration where a 20-sample delay is included in the disturbance path. The

Figure 7. Measured radiated sound power—minimization of pressure estimates in directions
(u, f)= (76·8°, 340°), (63·5°, 0°) and (103·2°, 0°): ——, before control; ----, after control (20-sample
delay); · · · · · , after control (no delay).
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Figure 8. Measured radiated sound power—minimization of pressure estimates in directions
(u, f)= (70°, 0°), (90°, 0°), and (110°, 0°): ——, before control; · · · · · , after control.

dotted line corresponds to an additional case based on the same control and error
configuration with no delay included in the disturbance path. In both cases, the
radiated sound power is attenuated by 20 dB or more near all resonance
frequencies of the uncontrolled response. Small increases in sound power can be
observed at off-resonance frequencies for both cases. Note that the dotted line
associated with a possible acausal system does not show significant loss in
performance compared to the dashed line. In other words, system causality does
not appear to be a critical factor in this case. Due to the small levels of damping
present in the system, the response is largely dominated by the five resonance
frequencies of the modes included in the bandwidth. It is therefore highly
predictable allowing control regardless of the system’s causality. The total
reduction level in radiated sound power achieved across the frequency bandwidth
of excitation is 15·4 dB with the 20-sample delay and 15·0 dB with no delay. Note
that the three directions of minimization ensure good global control, i.e., no
spillover is observed on the radiated sound power of the controlled response. In
other words, the controller is forced to attenuate the amplitude of all modes in
order to minimize all three error signals. Modal reduction is therefore the main
control mechanism involved in this case.

The second control case based on the structural acoustic sensor uses three
pressure estimates in directions (70°, 0°), (90°, 0°), and (110°, 0°). These three
directions of minimization correspond to the locations of the error microphones
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implemented in the next control case. Figure 8 shows the radiated sound power
before and after control. Excellent attenuation levels can be observed near
resonance of modes (1, 2), (1, 3), (2, 3) and (2, 4) while significant control spillover
is noticed near resonance of modes (1, 2)* and (1, 4)*. The total attenuation in
radiated sound power is 5·9 dB. In this case, all directions of minimization are in
the f=0° plane which coincides with radiation nodal line of modes (1, 2)*, (1, 4)*
and (2, 4)*. In other words these modes are not well observed by the three error
signals. This explains the increase in radiated sound power noticed near resonance
of modes (1, 2)* and (1, 4)*: rather than cancelling the associated modal
amplitudes, the controller recombines the modal amplitudes of the ‘‘double’’
modes and rotates the acceleration distribution such that the resulting nodal lines
are aligned with the minimization angles. This modal restructuring mechanism is
illustrated in Figure 9 where the out-of-plane velocity distribution measured by
the laser vibrometer is shown before and after control at 541 Hz, i.e., near
resonance of mode (1, 4). The acceleration distribution after control is clearly
rotated. Note that modal restructuring does not occur near resonance of modes
(1, 3) and (2, 3). The first two control actuators are aligned with the anti-nodal

Figure 9. Measured out-of-plane velocity distribution at 541 Hz; minimization of pressure
estimates in directions (u, f)= (70°, 0°), (90°, 0°) and (10°, 0°): (a) before control, (b) after control.
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Figure 10. Measured radiated sound power—minimization of pressure at error microphones in
directions (u, f)= (70°, 0°), (90°, 0°), (110°, 0°): ——, before control; · · · · · , after control.

lines of the associated ‘‘double’’ modes (1, 3)* and (2, 3)*, therefore preventing
their excitation. It should be pointed out that the previous case does not allow the
above modal restructuring as the error signals do not correspond to pressure
estimates along circumferential angles multiple of 45°, i.e., one error signal at least
observes the ‘‘double’’ modes thereby forcing the controller to reduce the
associated vibrations. These results therefore confirm the relatively good accuracy
of the structural acoustic sensor implemented on the cylinder. Despite the small
level of discretization (Qz =2, Qf =6) which only provides accurate estimates near
resonance of mode (1, 2), the sensor still yields error information somewhat related
to the radiated sound pressure at higher frequencies. This is further illustrated by
comparing these results with the next control case based on far-field error
microphones.

The third control case replaces the outputs of the structural acoustic sensor by
three error microphones located in the far field. To facilitate the comparison of
the two sensing approaches, this case uses the same control configuration as
previously. In particular, the three error microphones are located along the same
directions of pressure estimates implemented in the previous case. The radiated
sound power estimated from the traverse microphone measurements is presented
before and after control in Figure 10. As for the case of pressure estimates using
Discrete Structural Sensing (see Figure 8), excellent global sound attenuation is
achieved near resonance of modes (1, 2), (1, 3) and (2, 3). Modal reduction occurs
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at these frequencies, therefore cancelling the sound pressure radiated over the
entire field. Similarly, the sound power near resonance of mode (1, 2)* increases
as in the previous control case based on the structural acoustic sensor. Again, this
mode has a radiation nodal line along f=0° and thus remains unobserved by any
of the three error microphones. Note that the control spillover at this frequency
is larger than in the previous control case. As a result, the total sound radiated
power across the frequency bandwidth of excitation increases by 0·7 dB. Similar
behavior can be observed near resonance of modes (1, 4)* and (2, 4)*. This case
clearly illustrates the importance of the control actuator and error sensor
configurations. In particular, global sound attenuation for lightly damped
cylindrical radiators can only be achieved through modal reduction. As a final
remark, it should be mentioned that the controlled response based on pressure
estimates in the same three directions and the same two control actuators exhibits
very similar trends as the ones obtained with error microphones. In particular, the
structural acoustic sensor yields nearly the same response near resonance of modes
(1, 2) and (1, 2)* which confirms the accuracy of the pressure estimates at these
frequencies. Also, note that the structural acoustic sensor yields better
performance in terms of radiated sound power attenuation near resonance of
mode (2, 4) compared to the error microphones. This behavior suggests that both
(2, 4) and (2, 4)* modes are observed by the structural acoustic sensor due to errors
in the pressure estimates. Consequently, unlike the error microphones, the
structural acoustic sensor prevents modal restructuring, thus increasing global
sound attenuation.

7. CONCLUSIONS

Broadband radiation control from a finite cylinder has been demonstrated both
analytically and experimentally. The ASAC system implements a multi-channel
Filtered-x LMS control algorithm. Structural control inputs are applied through
piezoelectric actuators while error information is provided by a discrete structural
acoustic sensor. Results show attenuation in total radiated sound power of up to
15 dB is achieved across a frequency bandwidth encompassing the first five flexural
modes of the cylinder.

These results also validate the extension of Discrete Structural Acoustic Sensing
to baffled cylindrical geometries. In this technique, the sensor constructs real time
estimates of the presure radiated in the far field at prescribed angles from discrete
structural acceleration measurements and associated signal processing. Sensor
accuracy and comparisons of control performances based on Discrete Structural
Acoustic Sensing and the use of far-field error microphones, respectively,
demonstrate the ability of the structural acoustic sensor to replace direct far-field
pressure measurements. In particular, the analytical results show the minimizing
a cost function based on sensor estimates yields similar control performance to
that obtained with a cost function based on actual far-field pressure, provided
accuracy is ensured for the sensor. The experimental results on broadband
radiation control confirm this results. Similar control performances are obtained
for both types of error information. Examination of the system’s response at single
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frequencies within the bandwidth of excitation also reveals the controller behaves
similarly in each case. This includes frequencies where modal restructuring is the
main control mechanism which confirms the ability of the sensor to provide
accurate radiation information.

The accuracy of the sensor estimate over a given frequency bandwidth is
primarily related to the number of structural measurements implemented in the
sensor. In particular, for equally spaced measurements points, accuracy of the
sensor estimates is ensured provided the following two conditions are satisfied.
First, the number of measurement points along the cylinder main axis should be
such that the associated Nyquist wave-number (half the spatial sampling
frequency) is located on the wave-number axis above the main content of the
wave-number transform of the structural out-of-plane motion along this axis. In
terms of simply-supported mode shapes, this first requirement is satisfied if the
number of measurement points along the main axis is greater than the highest
order along the same axis of the modes which dominate the response. Second, the
number of measurement points along the circumferential direction of the cylinder
should be greater than twice the order of the highest circumferential order of the
modes dominating the response. These conditions define the frequency bandwidth
of accuracy for the structural acoustic sensor.

More generally, the design and implementation of the sensor do not require
precise knowledge of the vibration characteristics of the structure. While some
knowledge of the structural velocity distributions allows for predicting the
accuracy of the pressure estimate and pre-determining the appropriate
discretization level, the sensor transfer functions strictly depend on the geometry
of the structure and the surrounding fluid properties. This differs from a number
of alternative structural sensing techniques whose design and implementation are
directly based on dynamic properties of the structure, such as mode shapes. In
comparison, Discrete Structural Acoustic Sensing provides a more robust error
information. The modelling of the sensor transfer functions involves simple Finite
Impulse Response (FIR) filters. This type of filter is well suited to represent the
radiation of monopole and piston sources into an unbounded medium. In
particular, the sensor transfer functions do not feature resonances, which would
otherwise require the use of the more complex Infinite Impulse Response (IIR)
filter model. Finally, when implemented in a far-field radiation control system, the
time delay associated with the acoustic path can be removed from the sensor
transfer functions without affecting the controller performance. This property
greatly simplifies the sensor digital filters by reducing the number of coefficients
required for accurate modelling of the sensor transfer functions. The sensor DSP
implementation then becomes very efficient in terms of computations, allowing
higher sampling frequencies or the combination of the sensor and controller code
on a single DSP.
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